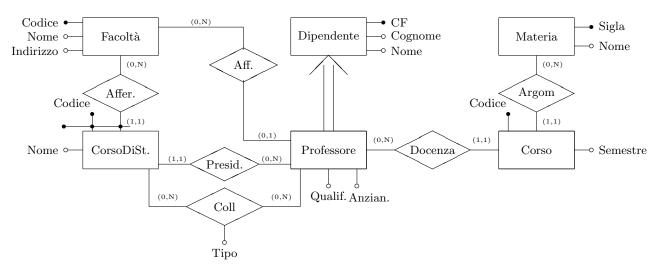
Compito A e Compito H — Soluzioni


Tempo a disposizione: un'ora e trenta minuti. Libri chiusi.

Domanda 1 (10%) Indicare quali fra le seguenti affermazioni sono vere, in una definizione rigorosa del modello relazionale:

- 1. ogni relazione ha almeno una chiave SÌ
- 2. ogni relazione ha esattamente una chiave NO
- 3. ogni attributo appartiene al massimo ad una chiave NO
- 4. possono esistere attributi che non appartengono a nessuna chiave SÌ
- 5. una chiave può essere sottoinsieme di un'altra **NO**
- 6. può esistere una chiave che coinvolge tutti gli attributi SÌ
- 7. può succedere che esistano più chiavi e che una di esse coinvolga tutti gli attributi NO

Domanda 2 (30%) Mostrare uno schema concettuale che rappresenti una realtà i cui dati siano organizzati per mezzo del seguente schema relazionale (dove l'asterisco indica la ammissibilità dei valori nulli).

- DIPENDENTE(CodiceFiscale, Cognome, Nome)
- Professore(CodiceFiscale, Qualifica, Anzianità, Facoltà*) con vincolo di integrità referenziale fra CodiceFiscale e la relazione DIPENDENTE e fra Facoltà e la relazione FACOLTÀ
- FACOLTÀ (Codice, Nome, Indirizzo)
- CorsoDiStudio(<u>Codice</u>, Nome, <u>Facoltà</u>, Presidente) con vincolo di integrità referenziale fra Facoltà e la relazione Facoltà e fra Presidente e la relazione Professore
- Collaborazione (Corso Di Studio, Facoltà, Professore, Tipo) con vincolo di integrità referenziale fra Corso Di Studio, Facoltà e la relazione Corso Di Studio e fra Professore e la relazione Professore
- CORSO(<u>Codice</u>, Materia, Docente, Semestre) con vincolo di integrità referenziale fra Materia e la relazione MATERIA e fra Docente e la relazione PROFESSORE
- MATERIA(Sigla, Nome)

Domanda 3 (30%) Con riferimento allo schema relazionale mostrato nella domanda precedente, specificare le seguenti interrogazioni (si consiglia di utilizzare una vista per semplificare la formulazione; in tal caso, mostrare la definizione della vista in SQL):

- 1. (in SQL) mostrare i professori, con codice fiscale, cognome, qualifica, anzianità e nome della eventuale facoltà di afferenza (per i professori che non afferiscono ad alcuna facoltà dovrà comparire il valore nullo)
- 2. (in SQL) trovare cognome e qualifica dei professori che afferiscono alla stessa facoltà di un professore chiamato Mario Bruni di qualifica "ordinario"
- 3. (in algebra relazionale) trovare i codici delle facoltà cui non afferisce alcun professore con cognome Bruni e qualifica "ordinario"

Solutione

Poiché tutte le interrogazioni richiedono (anche più volte, il join di DIPENDENTE e PROFESSORE, è utile la vista:

```
create view prof as
       select d.cf, cognome, nome, qualifica, anzianita, facolta
       from dipendente d join professore p on d.cf=p.cf
Interrogazioni (mostrate sia in algebra sia in SQL):
    select cf, cognome, qualifica, anzianità, facolta.nome as facolta
    from prof left join facolta on facolta=codice
   \pi_{\text{cf. cognome, qualifica, anzianità, nomefac}}(PROF) \bowtie_{LEFT} \text{ facolta} = \text{codice}(\rho_{\text{nomefac}\leftarrow\text{nome}}(FACOLTA))
2. SQL:
    select distinct p1.cognome, p1.qualifica
    from prof p1 join prof p2 on p1.facolta=p2.facolta
    where p2.cognome='Bruni' and
         p2.nome='Mario' and
         p2.qualifica='Ordinario'
   Algebra:
   \pi_{\text{cognome, qualifica}}(\text{PROF}) \bowtie_{\text{facolta}} = \text{facolta'}(\rho_{X' \leftarrow X}(\sigma_{\text{cognome='Bruni'}}, \dots, (\text{PROF}))))
    select codice as codicefacolta
    from facolta
    where codice not in (select facolta
                               from prof
                               where cognome='Bruni'
                               and qualifica='Ordinario')
   Algebra:
```

 $\pi_{\text{codice}}(\text{FACOLTA}) - \pi_{\text{facolta}}(\sigma_{\text{cognome}='\text{Bruni'}, \text{qualifica}='\text{ordinario'}}(\text{PROF}))$

Domanda 4 (15%) Con riferimento ad una relazione Professori(<u>CF</u>, Nome, Eta, Qualifica), scrivere le interrogazioni SQL che calcolano l'età media dei professori di ciascuna qualifica, nei due casi seguenti:

- 1. se l'età non è nota si usa per essa il valore nullo
- 2. se l'età non è nota si usa per essa il valore 0

Solutione

- le funzioni aggregative escludono dalla valutazione le ennuple con valori nulli select Qualifica, avg(Eta) as EtaMedia from Professori group by Qualifica
- 2. è necessario escludere esplicitamente dal calcolo della media le ennuple con il valore che denota l'informazione incompleta

```
select Qualifica, avg(Eta) as EtaMedia
from Professori
where Eta <> 0
group by Qualifica
```

Domanda 5 (15%) Si consideri lo schema concettuale seguente, nel quale l'attributo Saldo di una occorrenza di ContoCorrenze è ottenuto come somma dei valori dell'attributo Importo per le occorrenze di Operazione ad essa correlate tramite la relationship Movimento.

Valutare se convenga o meno mantenere la ridondanza, tenendo conto del fatto che le cardinalità delle due entità sono $L_{\rm CC}=2.000$ e $L_{\rm OP}=20.000$ e che le operazioni più importanti sono:

 OP_1 scrittura di un movimento, con frequenza $f_1 = 10$ OP_2 lettura del saldo, con con frequenza $f_2 = 1000$

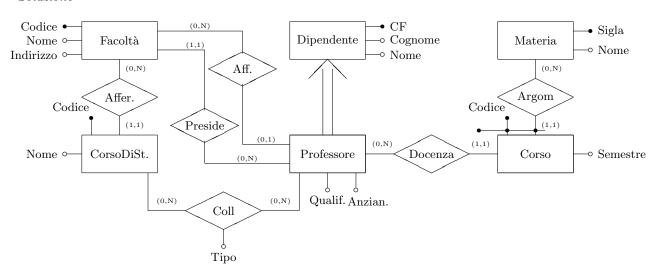
Soluzione

Procediamo come sul testo, considerando sia gli accessi a occorrenze di entità sia ad occorrenze di relationship e contando doppio gli accessi in scrittura. Il costo complessivo è sempre pari a $c_1 \times f_1 + c_2 \times f_2$, dove c_1 e c_2 sono i costi delle singole esecuzioni delle operazioni.

- In presenza di ridondanza
 - l'operazione di lettura del saldo ha un costo pari a 1
 - l'operazione di scrittura di un movimento ha costo pari a 7 (una lettura e tre scritture)
 - e quindi il costo complessivo è pari a $1 \times f_2 + 7 \times f_1 = 1.000 + 70 = 1.070$
- In assenza di ridondanza
 - -l'operazione di lettura del saldo ha un costo pari al doppio del numero medio di movimenti per conto corrente e cioè $2\times L_{\rm OP}/L_{\rm CC}$
 - l'operazione di scrittura di un movimento ha costo pari a 4 (due scritture)
 - e quindi il costo complessivo è pari a $2 \times L_{\mathrm{OP}}/L_{\mathrm{CC}} \times f_2 + 4 \times f_1 = 2 \times 10 \times 1.000 + 4 \times 10 = 20.040$

Compito B e Compito G — Soluzioni

Tempo a disposizione: un'ora e trenta minuti. Libri chiusi.


Domanda 1 (10%) Indicare quali fra le seguenti affermazioni sono vere, in una definizione rigorosa del modello relazionale:

- 1. ogni attributo appartiene al massimo ad una chiave **NO**
- 2. possono esistere attributi che non appartengono a nessuna chiave SÌ
- 3. ogni relazione ha almeno una chiave SÌ
- 4. ogni relazione ha esattamente una chiave **NO**
- 5. può esistere una chiave che coinvolge tutti gli attributi SÌ
- 6. può succedere che esistano più chiavi e che una di esse coinvolga tutti gli attributi NO
- 7. una chiave può essere sottoinsieme di un'altra **NO**

Domanda 2 (30%) Mostrare uno schema concettuale che rappresenti una realtà i cui dati siano organizzati per mezzo del seguente schema relazionale (dove l'asterisco indica la ammissibilità dei valori nulli).

- DIPENDENTE(CodiceFiscale, Cognome, Nome)
- Professore(CodiceFiscale, Qualifica, Anzianità, Facoltà*) con vincolo di integrità referenziale fra CodiceFiscale e la relazione DIPENDENTE e fra Facoltà e la relazione FACOLTÀ
- FACOLTÀ (Codice, Nome, Indirizzo, Preside) con vincolo di integrità referenziale fra Preside e la relazione Professore

- CORSODISTUDIO(Codice, Nome, Facoltà) con vincolo di integrità referenziale fra Facoltà e la relazione FACOLTÀ
- COLLABORAZIONE (Corso Di Studio, Professore, Tipo) con vincolo di integrità referenziale fra CorsoDiStudio e la relazione CORSODISTUDIO e fra Professore e la relazione Professore
- Corso(Codice, Materia, Docente, Semestre) con vincolo di integrità referenziale fra Materia e la relazione Materia e fra Docente e la relazione Professore
- MATERIA(Sigla, Nome)

Domanda 3 (30%) Con riferimento allo schema relazionale mostrato nella domanda precedente, specificare le seguenti interrogazioni (si consiglia di utilizzare una vista per semplificare la formulazione; in tal caso, mostrare la definizione della vista in SQL):

- 1. (in algebra relazionale) mostrare i professori, con codice fiscale, cognome, nome, qualifica, anzianità e nome della eventuale facoltà di afferenza (per i professori che non afferiscono ad alcuna facoltà dovrà comparire il valore nullo)
- 2. (in algebra relazionale) trovare cognome e qualifica dei professori che afferiscono alla stessa facoltà di un professore chiamato Mario Neri di qualifica "ordinario"
- 3. (in SQL) trovare i codici delle facoltà cui non afferisce alcun professore con cognome Neri e qualifica "ordinario"

Solutione

Poiché tutte le interrogazioni richiedono (anche più volte, il join di DIPENDENTE e PROFESSORE, è utile la vista:

```
create view prof as
       select d.cf, cognome, nome, qualifica, anzianita, facolta
       from dipendente d join professore p on d.cf=p.cf
Interrogazioni (mostrate sia in algebra sia in SQL):
     select cf, cognome, prof.nome as nome, qualifica, anzianità, facolta.nome as facolta
    from prof left join facolta on facolta=codice
   Algebra:
   \pi_{\mathrm{cf, cognome, nome, qualifica, anzianita}}, nomefac(\mathrm{PROF} \bowtie_{\mathrm{LEFT}} \mathrm{facolta} = \mathrm{codice}(\rho_{\mathrm{nomefac}\leftarrow \mathrm{nome}}(\mathrm{FACOLTA}))
2. SQL:
    select distinct p1.cognome, p1.qualifica
    from prof p1 join prof p2 on p1.facolta=p2.facolta
    where p2.cognome='Neri' and
          p2.nome='Mario' and
          p2.qualifica='Ordinario'
   Algebra:
   \pi_{\text{cognome, qualifica}}(PROF) \bowtie_{\text{facolta}} = \text{facolta'}(\rho_{X' \leftarrow X}(\sigma_{\text{cognome}} - \text{`Neri'} \land \dots (PROF))))
    select codice as codicefacolta
```

```
from facolta
where codice not in (select facolta
                     from prof
                     where cognome='Neri'
                     and qualifica='Ordinario')
```

Algebra:

 $\pi_{\text{codice}}(\text{FACOLTA}) - \pi_{\text{facolta}}(\sigma_{\text{cognome}=',\text{Neri'},\text{qualifica}=',\text{ordinario'}}(\text{PROF}))$

Domanda 4 (15%) Con riferimento ad una relazione IMPIEGATI(<u>CF</u>, Nome, Retribuzione, Qualifica), scrivere le interrogazioni SQL che calcolano la retribuzione media degli impiegati di ciascuna qualifica, nei due casi seguenti:

- 1. se la retribuzione non è nota si usa per essa il valore nullo
- 2. se la retribuzione non è nota si usa per essa il valore 0

Soluzione

 le funzioni aggregative escludono dalla valutazione le ennuple con valori nulli select Qualifica, avg(Retribuzione) as RetribuzioneMedia from Impiegati group by Qualifica

2. è necessario escludere esplicitamente dal calcolo della media le ennuple con il valore che denota l'informazione incompleta

```
select Qualifica, avg(Retribuzione) as RetribuzioneMedia
from Impiegati
where Retribuzione <> 0
group by Qualifica
```

Domanda 5 (15%) Si consideri lo schema concettuale seguente, nel quale l'attributo Saldo di una occorrenza di ContoCorrenze è ottenuto come somma dei valori dell'attributo Importo per le occorrenze di Operazione ad essa correlate tramite la relationship Movimento.

Valutare se convenga o meno mantenere la ridondanza, tenendo conto del fatto che le cardinalità delle due entità sono $N_{\rm CC}=2.000$ e $N_{\rm OP}=10.000$ e che le operazioni più importanti sono:

 OP_1 lettura del saldo, con frequenza $f_1 = 10$

 OP_2 scrittura di un movimento, con con frequenza $f_2 = 1000$

Solutione

Procediamo come sul testo, considerando sia gli accessi a occorrenze di entità sia ad occorrenze di relationship e contando doppio gli accessi in scrittura. Il costo complessivo è sempre pari a $c_1 \times f_1 + c_2 \times f_2$, dove c_1 e c_2 sono i costi delle singole esecuzioni delle operazioni.

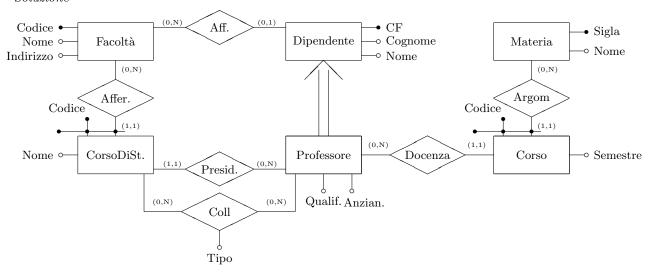
- In presenza di ridondanza
 - l'operazione di lettura del saldo ha un costo pari a 1
 - l'operazione di scrittura di un movimento ha costo pari a 7 (una lettura e tre scritture)

e quindi il costo complessivo è pari a $1 \times f_1 + 7 \times f_2 = 10 + 7 \times 1.000 = 7.010$

- In assenza di ridondanza
 - -l'operazione di lettura del saldo ha un costo pari al doppio del numero medio di movimenti per conto corrente e cioè $2\times N_{\rm OP}/N_{\rm CC}$
 - l'operazione di scrittura di un movimento ha costo pari a 4 (due scritture)

e quindi il costo complessivo è pari a $2 \times N_{\mathrm{OP}}/N_{\mathrm{CC}} \times f_1 + 4 \times f_2 = 2 \times 5 \times 10 + 4 \times 1.000 = 4.100$

Compito C e Compito F — Soluzioni


Tempo a disposizione: un'ora e trenta minuti. Libri chiusi.

Domanda 1 (10%) Indicare quali fra le seguenti affermazioni sono vere, in una definizione rigorosa del modello relazionale:

- 1. ogni attributo appartiene al massimo ad una chiave ${f NO}$
- 2. possono esistere attributi che non appartengono a nessuna chiave SÌ
- 3. una chiave può essere sottoinsieme di un'altra NO
- 4. può esistere una chiave che coinvolge tutti gli attributi SÌ
- 5. ogni relazione ha almeno una chiave SÌ
- 6. ogni relazione ha esattamente una chiave NO
- 7. può succedere che esistano più chiavi e che una di esse coinvolga tutti gli attributi NO

Domanda 2 (30%) Mostrare uno schema concettuale che rappresenti una realtà i cui dati siano organizzati per mezzo del seguente schema relazionale (dove l'asterisco indica la ammissibilità dei valori nulli).

- DIPENDENTE(<u>CodiceFiscale</u>, Cognome, Nome, Facoltà*) con vincolo di integrità referenziale fra Facoltà e la relazione Facoltà
- Professore(CodiceFiscale, Qualifica, Anzianità) con vincolo di integrità referenziale fra CodiceFiscale e la relazione DIPENDENTE
- FACOLTÀ (Codice, Nome, Indirizzo)
- CORSODISTUDIO(<u>Codice</u>, Nome, <u>Facoltà</u>, Presidente) con vincolo di integrità referenziale fra Facoltà e la relazione FACOLTÀ e fra Presidente e la relazione PROFESSORE
- Collaborazione (Corso Di Studio, Facoltà, Professore, Tipo) con vincolo di integrità referenziale fra Corso Di Studio, Facoltà e la relazione Corso Di Studio e fra Professore e la relazione Professore
- CORSO(<u>Codice</u>, <u>Materia</u>, Docente, Semestre) con vincolo di integrità referenziale fra Materia e la relazione MATERIA e fra Docente e la relazione PROFESSORE
- MATERIA(Sigla, Nome)

Domanda 3 (30%) Con riferimento allo schema relazionale mostrato nella domanda precedente, specificare le seguenti interrogazioni (si consiglia di utilizzare una vista per semplificare la formulazione; in tal caso, mostrare la definizione della vista in SQL):

- 1. (in SQL) mostrare i professori, con codice fiscale, cognome, nome, anzianità e nome della eventuale facoltà di afferenza (per i professori che non afferiscono ad alcuna facoltà dovrà comparire il valore nullo)
- 2. (in algebra relazionale) trovare cognome e qualifica dei professori che afferiscono alla stessa facoltà di un professore chiamato Mario Rossi di qualifica "ordinario"
- 3. (in SQL) trovare i codici delle facoltà cui non afferisce alcun professore con cognome Rossi e qualifica "ordinario"

Solutione

Poiché tutte le interrogazioni richiedono (anche più volte, il join di DIPENDENTE e PROFESSORE, è utile la vista:

```
create view prof as
       select d.cf, cognome, nome, qualifica, anzianita, facolta
       from dipendente d join professore p on d.cf=p.cf
Interrogazioni (mostrate sia in algebra sia in SQL):
     select cf, cognome, prof.nome as nome, anzianità, facolta.nome as facolta
    from prof left join facolta on facolta=codice
   \pi_{\mathrm{cf, cognome, nome, anzianita}}, nomefac(\mathrm{PROF}) \bowtie_{\mathrm{LEFT}} facolta = \mathrm{codice}(\rho_{\mathrm{nomefac}\leftarrow\mathrm{nome}}(\mathrm{FACOLTA}))
2. SQL:
    select distinct p1.cognome, p1.qualifica
    from prof p1 join prof p2 on p1.facolta=p2.facolta
    where p2.cognome='Rossi' and
          p2.nome='Mario' and
          p2.qualifica='Ordinario'
   Algebra:
   \pi_{\text{cognome, qualifica}}(\text{PROF}) \bowtie_{\text{facolta}} = \text{facolta'}(\rho_{X' \leftarrow X}(\sigma_{\text{cognome='Rossi'} \land \dots}(\text{PROF}))))
    select codice as codicefacolta
    from facolta
    where codice not in (select facolta
                                 from prof
                                 where cognome='Rossi'
                                 and qualifica='Ordinario')
   Algebra:
   \pi_{\text{codice}}(\text{FACOLTA}) - \pi_{\text{facolta}}(\sigma_{\text{cognome}='\text{Rossi'}, \text{qualifica}='\text{ordinario'}}(\text{PROF}))
```

Domanda 4 (15%) Con riferimento ad una relazione IMPIEGATI(<u>CF</u>, Nome, Eta, Qualifica), scrivere le interrogazioni SQL che calcolano l'età media degli impiegati di ciascuna qualifica, nei due casi seguenti:

- 1. se l'età non è nota si usa per essa il valore nullo
- 2. se l'età non è nota si usa per essa il valore 99

Solutione

 le funzioni aggregative escludono dalla valutazione le ennuple con valori nulli select Qualifica, avg(Eta) as EtaMedia from Impiegati group by Qualifica

2. è necessario escludere esplicitamente dal calcolo della media le ennuple con il valore che denota l'informazione incompleta

```
select Qualifica, avg(Eta) as EtaMedia
from Impiegati
where Eta <> 99
group by Qualifica
```

Domanda 5 (15%) Si consideri lo schema concettuale seguente, nel quale l'attributo Saldo di una occorrenza di ContoCorrenze è ottenuto come somma dei valori dell'attributo Importo per le occorrenze di Operazione ad essa correlate tramite la relationship Movimento.

Valutare se convenga o meno mantenere la ridondanza, tenendo conto del fatto che le cardinalità delle due entità sono $N_{\rm CC}=1.000$ e $N_{\rm OP}=1.000.000$ e che le operazioni più importanti sono:

 OP_1 scrittura di un movimento, con frequenza $f_1 = 10$ OP_2 lettura del saldo, con con frequenza $f_2 = 1000$

Soluzione

Procediamo come sul testo, considerando sia gli accessi a occorrenze di entità sia ad occorrenze di relationship e contando doppio gli accessi in scrittura. Il costo complessivo è sempre pari a $c_1 \times f_1 + c_2 \times f_2$, dove c_1 e c_2 sono i costi delle singole esecuzioni delle operazioni.

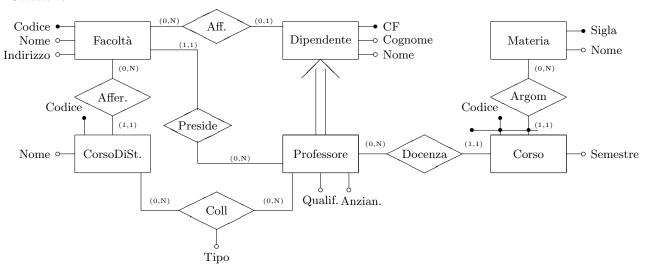
- In presenza di ridondanza
 - l'operazione di lettura del saldo ha un costo pari a 1
 - l'operazione di scrittura di un movimento ha costo pari a 7 (una lettura e tre scritture)

e quindi il costo complessivo è pari a $1 \times f_2 + 7 \times f_1 = 1.000 + 7 \times 10 = 1.070$

- In assenza di ridondanza
 - -l'operazione di lettura del saldo ha un costo pari al doppio del numero medio di movimenti per conto corrente e cioè $2\times N_{\rm OP}/N_{\rm CC}$
 - l'operazione di scrittura di un movimento ha costo pari a 4 (due scritture)

e quindi il costo complessivo è pari a $2 \times N_{\mathrm{OP}}/N_{\mathrm{CC}} \times f_2 + 4 \times f_1 = 2 \times 1.000 \times 1.000 + 4 \times 10 = 2.000.040$

Compito D e Compito E — Soluzioni


Tempo a disposizione: un'ora e trenta minuti. Libri chiusi.

Domanda 1 (10%) Indicare quali fra le seguenti affermazioni sono vere, in una definizione rigorosa del modello relazionale:

- 1. può esistere una chiave che coinvolge tutti gli attributi $\mathbf{S}\mathbf{\dot{l}}$
- 2. può succedere che esistano più chiavi e che una di esse coinvolga tutti gli attributi NO
- 3. ogni relazione ha almeno una chiave SÌ
- 4. ogni relazione ha esattamente una chiave **NO**
- 5. ogni attributo appartiene al massimo ad una chiave NO
- 6. possono esistere attributi che non appartengono a nessuna chiave SÌ
- 7. una chiave può essere sottoinsieme di un'altra **NO**

Domanda 2 (30%) Mostrare uno schema concettuale che rappresenti una realtà i cui dati siano organizzati per mezzo del seguente schema relazionale (dove l'asterisco indica la ammissibilità dei valori nulli).

- DIPENDENTE(<u>CodiceFiscale</u>, Cognome, Nome, Facoltà*) con vincolo di integrità referenziale fra Facoltà e la relazione FACOLTÀ
- Professore(CodiceFiscale, Qualifica, Anzianità) con vincolo di integrità referenziale fra CodiceFiscale e la relazione DIPENDENTE
- Facoltà(<u>Codice</u>, Nome, Indirizzo, Preside) con vincolo di integrità referenziale fra Preside e la relazione Professore
- CORSODISTUDIO(<u>Codice</u>, Nome, Facoltà) con vincolo di integrità referenziale fra Facoltà e la relazione FACOLTÀ
- COLLABORAZIONE(<u>CorsoDiStudio</u>, <u>Professore</u>, Tipo) con vincolo di integrità referenziale fra CorsoDiStudio e la relazione CorsoDiStudio e fra Professore e la relazione Professore
- Corso(<u>Codice</u>, <u>Materia</u>, Docente, Semestre) con vincolo di integrità referenziale fra Materia e la relazione MATERIA e fra Docente e la relazione PROFESSORE
- MATERIA(Sigla, Nome)

Domanda 3 (30%) Con riferimento allo schema relazionale mostrato nella domanda precedente, specificare le seguenti interrogazioni (si consiglia di utilizzare una vista per semplificare la formulazione; in tal caso, mostrare la definizione della vista in SQL):

- 1. (in algebra relazionale) mostrare i professori, con codice fiscale, cognome, nome, qualifica e nome della eventuale facoltà di afferenza (per i professori che non afferiscono ad alcuna facoltà dovrà comparire il valore nullo)
- 2. (in SQL) trovare cognome e qualifica dei professori che afferiscono alla stessa facoltà di un professore chiamato Mario Mori di qualifica "ordinario"
- 3. (in algebra relazionale) trovare i codici delle facoltà cui non afferisce alcun professore con cognome Mori e qualifica "ordinario"

Solutione

Poiché tutte le interrogazioni richiedono (anche più volte, il join di DIPENDENTE e PROFESSORE, è utile la vista:

```
create view prof as
       select d.cf, cognome, nome, qualifica, anzianita, facolta
       from dipendente d join professore p on d.cf=p.cf
Interrogazioni (mostrate sia in algebra sia in SQL):
     select cf, cognome, prof.nome as nome, qualifica, facolta.nome as facolta
    from prof left join facolta on facolta=codice
   \pi_{\mathrm{cf, cognome, nome, qualifica, nomefac}}(\mathrm{PROF}) \bowtie_{\mathrm{LEFT}} \mathrm{facolta} = \mathrm{codice}(\rho_{\mathrm{nomefac}\leftarrow\mathrm{nome}}(\mathrm{FACOLTA}))
2. SQL:
    select distinct p1.cognome, p1.qualifica
    from prof p1 join prof p2 on p1.facolta=p2.facolta
    where p2.cognome='Mori' and
          p2.nome='Mario' and
          p2.qualifica='Ordinario'
   Algebra:
   \pi_{\text{cognome, qualifica}}(PROF) \bowtie_{\text{facolta}} = \text{facolta'}(\rho_{X' \leftarrow X}(\sigma_{\text{cognome}}, \text{Mori'}, \dots, (PROF))))
    select codice as codicefacolta
    from facolta
    where codice not in (select facolta
                                 from prof
                                  where cognome='Mori'
                                  and qualifica='Ordinario')
   Algebra:
   \pi_{\text{codice}}(\text{FACOLTA}) - \pi_{\text{facolta}}(\sigma_{\text{cognome}=',\text{Mori}',\text{qualifica}=',\text{ordinario}',\text{(PROF)})
```

Domanda 4 (15%) Con riferimento ad una relazione Professori(<u>CF</u>, Nome, Retribuzione, Qualifica), scrivere le interrogazioni SQL che calcolano la retribuzione media dei professori di ciascuna qualifica, nei due casi seguenti:

- 1. se la retribuzione non è nota si usa per essa il valore nullo
- 2. se la retribuzione non è nota si usa per essa il valore 99999999

Soluzione

- le funzioni aggregative escludono dalla valutazione le ennuple con valori nulli select Qualifica, avg(Retribuzione) as RetribuzioneMedia from Professori group by Qualifica
- 2. è necessario escludere esplicitamente dal calcolo della media le ennuple con il valore che denota l'informazione incompleta

```
select Qualifica, avg(Retribuzione) as RetribuzioneMedia
from Professori
where Retribuzione <> 99999999
group by Qualifica
```

Domanda 5 (15%) Si consideri lo schema concettuale seguente, nel quale l'attributo Saldo di una occorrenza di ContoCorrenze è ottenuto come somma dei valori dell'attributo Importo per le occorrenze di Operazione ad essa correlate tramite la relationship Movimento.

Valutare se convenga o meno mantenere la ridondanza, tenendo conto del fatto che le cardinalità delle due entità sono $L_{\rm CC}=1.000$ e $L_{\rm OP}=1.000.000$ e che le operazioni più importanti sono:

 OP_1 lettura del saldo, con frequenza $f_1 = 10$

 OP_2 scrittura di un movimento, con con frequenza $f_2 = 1000$

Solutione

Procediamo come sul testo, considerando sia gli accessi a occorrenze di entità sia ad occorrenze di relationship e contando doppio gli accessi in scrittura. Il costo complessivo è sempre pari a $c_1 \times f_1 + c_2 \times f_2$, dove c_1 e c_2 sono i costi delle singole esecuzioni delle operazioni.

- In presenza di ridondanza
 - l'operazione di lettura del saldo ha un costo pari a 1
 - l'operazione di scrittura di un movimento ha costo pari a 7 (una lettura e tre scritture)

e quindi il costo complessivo è pari a $1 \times f_1 + 7 \times f_2 = 10 + 7 \times 1.000 = 7.010$

- In assenza di ridondanza
 - -l'operazione di lettura del saldo ha un costo pari al doppio del numero medio di movimenti per conto corrente e cioè $2\times L_{\rm OP}/L_{\rm CC}$
 - l'operazione di scrittura di un movimento ha costo pari a 4 (due scritture)

e quindi il costo complessivo è pari a $2 \times L_{\mathrm{OP}}/L_{\mathrm{CC}} \times f_1 + 4 \times f_2 = 2 \times 1.000 \times 10 + 4 \times 1.000 = 24.000$