ALGEBRA RELAZIONALE

Linguaggi per basi di dati

- operazioni sullo schema
 - DDL
- operazioni sui dati
 - DML
 - interrogazione ("query")
 - aggiornamento

Linguaggi di interrogazione per basi di dati relazionali

- Dichiarativi ("che cosa")
 - specificano le proprietà del risultato
- Procedurali ("come")
 - costruiscono il risultato

Linguaggi di interrogazione

- Algebra relazionale: procedurale
- Calcolo relazionale: dichiarativo (teorico)
- SQL (Structured Query Language): parzialmente dichiarativo (reale)
- QBE (Query by Example): dichiarativo (reale)

Algebra relazionale

- Insieme di operatori
 - su relazioni, producono relazioni
 - quindi possono essere composti

Un servizio online per esercitazioni in algebra relazionale

- RelaX
 - http://dbis-uibk.github.io/relax/calc
- Verrà proposto un "homework" il cui svolgimento sarà necessario per partecipare alla prova parziale

Oggi lo usiamo per vedere i risultati

Operatori dell'algebra relazionale

- unione, intersezione, differenza
- ridenominazione
- selezione
- proiezione
- aggregazione
- join (join naturale, prodotto cartesiano, theta-join)

Operatori insiemistici

- le relazioni sono insiemi
- i risultati debbono essere relazioni
- quindi:
 - è possibile applicare unione, intersezione, differenza solo a relazioni definite sugli stessi attributi
- esempi alla lavagna e su Relax

Base di dati per l'esempio

Laureati

Matricola	Nome	Età
7274	Rossi	42
7432	Neri	54
9824	Verdi	45

Specialisti

Matricola	Nome	Età
9297	Neri	33
7432	Neri	54
9824	Verdi	45

La carichiamo in Relax

http://dbis-uibk.github.io/relax/calc/gist/1a9dc6cd0f3478388fc177dfc9b5a314

Un'unione sensata ma impossibile

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Paternità U Maternità

??

Ridenominazione

- operatore su una relazione
- "modifica lo schema" lasciando inalterata l'istanza dell'operando
- simbolo REN oppure RHO oppure ρ
- sintassi ed esempio alla lavagna

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

REN_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Paternità

Padre	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

REN_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

Maternità

Madre	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

REN_{Genitore ← Madre} (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

REN_{Genitore ← Padre} (Paternità)

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco

REN_{Genitore ← Madre} (Maternità)

REN_{Genitore} ← Madre (Maternità)

Genitore	Figlio
Eva	Abele
Eva	Set
Sara	Isacco

Genitore	Figlio
Adamo	Abele
Adamo	Caino
Abramo	Isacco
Eva	Abele
Eva	Set
Sara	Isacco

Impiegati	Cognome	Ufficio	Stipendio
	Rossi	Roma	55
	Neri	Milano	64

Operai

Cognome	Fabbrica	Salario
Bruni	Monza	45
Verdi	Latina	55

REN _{Sede}, Retribuzione ← Ufficio, Stipendio (Impiegati)

REN _{Sede}, Retribuzione ← Fabbrica, Salario (Operai)

Cognome	Sede	Retribuzione
Rossi	Roma	55
Neri	Milano	64
Bruni	Monza	45
Verdi	Latina	55

Selezione

 "seleziona" da una relazione le ennuple che soddisfano una condizione

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
9553	Milano	Milano	44
5698	Neri	Napoli	64

- impiegati che
 - guadagnano più di 50
 - guadagnano più di 50 e lavorano a Milano
 - hanno lo stesso nome della filiale presso cui lavorano

Selezione, sintassi e semantica

alla lavagna

• simbolo SEL σ

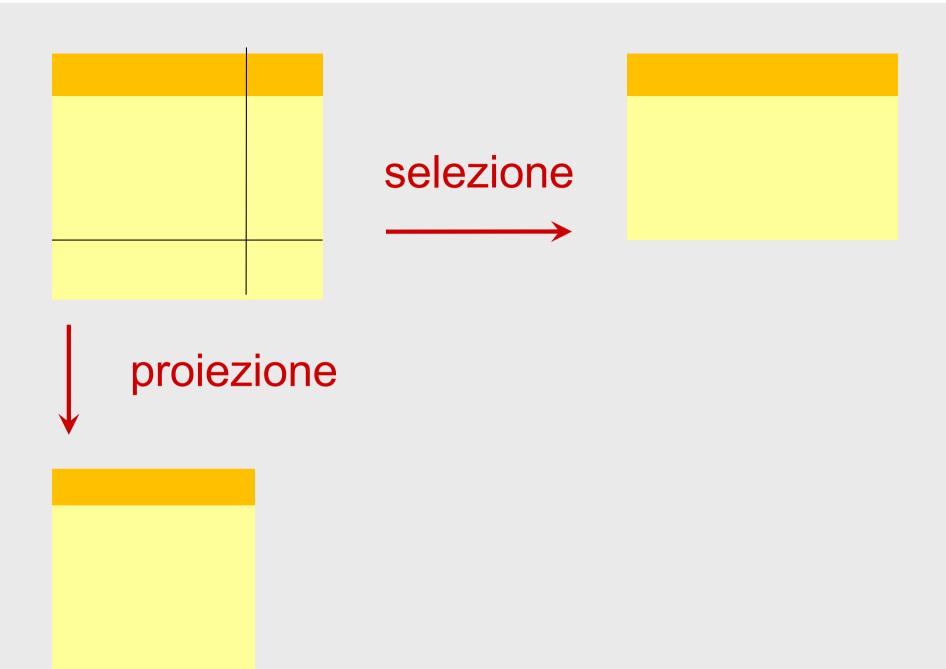
• impiegati che guadagnano più di 50

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	55
5998	Neri	Milano	64
5698	Neri	Napoli	64

 impiegati che guadagnano più di 50 e lavorano a Milano

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	64

 impiegati che hanno lo stesso nome della filiale presso cui lavorano


Matricola	Cognome	Filiale	Stipendio
9553	Milano	Milano	44

Selezione e proiezione

- operatori "ortogonali"
 - alla lavagna

Selezione e proiezione

- operatori "ortogonali"
- selezione:
 - decomposizione orizzontale
- proiezione:
 - decomposizione verticale

Proiezione

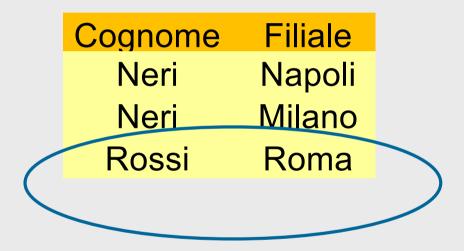
- decompone "verticalmente":
 - "tutte" le ennuple, alcuni attributi

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Neri	Napoli	55
5998	Neri	Milano	64
9553	Rossi	Roma	44
5698	Rossi	Roma	64

- per tutti gli impiegati:
 - matricola e cognome
 - cognome e filiale

Proiezione, sintassi e semantica


alla lavagna

• matricola e cognome di tutti gli impiegati

Matricola	Cognome
7309	Neri
5998	Neri
9553	Rossi
5698	Rossi

PROJ Matricola, Cognome (Impiegati)

• cognome e filiale di tutti gli impiegati

PROJ Cognome, Filiale (Impiegati)

Cardinalità delle proiezioni

- Una proiezione
 - contiene al più tante ennuple quante l'operando
 - può contenerne di meno
- Quando possiamo essere sicuri che non siano di meno?

Cardinalità delle proiezioni

- Proprietà interessante:
 - se X è una superchiave di R, allora PROJ_X(R) contiene esattamente tante ennuple quante R

Selezione con valori nulli

Impiegati

Matricola	Cognome	Filiale	Stipendio
7309	Rossi	Roma	32
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

- la condizione atomica è vera solo per valori non nulli
- vediamo su Relax (relazione ImpiegatiTer)
 http://dbis-uibk.github.io/relax/calc/gist/1a9dc6cd0f3478388fc177dfc9b5a314

Un risultato non desiderabile

SEL _{Stipendio>40} (Persone) ∪ SEL _{Stipendio≤40} (Persone) ≠ Persone

- Vediamo su Relax.
- Perché?
 - Perché le selezioni vengono valutate separatamente!
- Ma anche

```
SEL <sub>Stipendio>40 ∨ Stipendio≤40</sub> (Persone) ≠ Persone
```

- Perché?
 - Perché anche le condizioni atomiche vengono valutate separatamente!

Selezione con valori nulli: soluzione

SEL Stipendio > 40 (Impiegati)

- la condizione atomica è vera solo per valori non nulli
- per riferirsi ai valori nulli esistono forme apposite di condizioni:

IS NULL IS NOT NULL

 si potrebbe usare (ma non serve) una "logica a tre valori" (vero, falso, sconosciuto)

Nota bene

RelaX usa

... = null

Quindi:

```
SEL Stipendio>40 (Persone) ∪ SEL Stipendio≤40 (Persone) ∪
SEL Stipendio IS NULL (Persone)
=
SEL Stipendio>40 ∨ Stipendio≤40 ∨ Stipendio IS NULL (Persone)
=
Persone
```

Impiegati

Matricola	Cognome	Filiale	Stipendio
5998	Neri	Milano	45
9553	Bruni	Milano	NULL

SEL (Stipendio > 40) OR (Stipendio IS NULL) (Impiegati)

Selezione e proiezione

 Combinando selezione e proiezione, possiamo estrarre interessanti informazioni da una relazione matricola e cognome degli impiegati che guadagnano più di 50

Matricola	Cognome
7309	Rossi
5998	Neri
5698	Neri

PROJ_{Matricola,Cognome} (SEL_{Stipendio > 50} (Impiegati))

- Combinando selezione e proiezione, possiamo estrarre informazioni da una relazione
- Invece non possiamo
 - calcolare informazioni derivate
 - correlare informazioni presenti in relazioni diverse, né informazioni in ennuple diverse di una stessa relazione
- Vediamo altri operatori che permettono queste attività

Aggregazione

- Il contenuto delle basi di dati viene spesso aggregato:
 - Il voto massimo nell'esame di basi di dati
 - Il voto medio per ciascun esame
 - Il numero di CFU conseguiti da ciascuno studente

Aggregazione, sintassi e semantica

Sintassi

AGG AttributiRaggruppamento; Funzione (Attributo), ... (Operando)

- Funzione: count, sum, avg, max, min
- Semantica
 - Il risultato contiene la proiezione sugli attributi di raggruppamento e il valore delle funzioni in corrispondenza al sottoinsieme raggruppato
- simbolo più compatto ... γ (da GROUP BY)

Versione semplice

- Senza attributo di raggruppamento
- Calcolo sull'intera relazione

```
AGG _{Funzione\ (Attributo)} (Operando) o meglio _{AGG\ Funzione\ (Attributo)\ 	o\ Nome} (Operando)
```

	•
esam	ı
CSaiii	

Matricola	Voto	Codice
3456	30	04
3456	26	02
9283	27	01
6554	26	01
6554	26	05

• Il numero totale di esami

NumeroEsami 5

esami

Matricola	Voto	Codice
3456	30	04
3456	26	02
9283	27	01
6554	26	01
6554	26	05

Il voto medio complessivo

MediaGenerale 27

esami	Matricola	Voto	Codice
	3456	30	04
	3456	26	02
	9283	27	01
	6554	26	01
	6554	26	05

• Il numero di esami e il voto medio complessivo

NumeroEsami	MediaGenerale
5	27

Versione completa

- Con attributi di raggruppamento
- Calcolo sulle partizioni

```
AGG AttributiRaggruppamento; Funzione (Attributo), ... (Operando)
```

o meglio

```
AGG AttributiRaggruppamento; Funzione (Attributo) → Nome, ... (Operando)
```

esami	Matricola	Voto	Codice	
	3456	30	04	
	3456	26	02	
_	9283	27	01	
_	6554	26	01	
	6554	26	05	

Il voto medio per ciascuno studente

AGG _{Matricola}; avg(Voto) → Media (esami)

Matricola	Media
3456	28
9283	27
6554	26

esami	Matricola	Voto	Codice	
	3456	30	04	
	3456	26	02	
_	9283	27	01	_
_	6554	26	01	
	6554	26	05	

Numero esami e voto medio per ciascuno studente

 $AGG_{Matricola;\ avg(Voto) \ \rightarrow \ Media,\ count(^*) \ \rightarrow \ NumEsami}\ (esami)$

Matricola	Media	NumEsami
3456	28	2
9283	27	1
6554	26	2

Valori nulli

 vengono trattati correttamente (cioè ignorati nelle medie, nelle somme e nei conteggi)

count

- count(*) conta le ennuple
- count(A) conta le ennuple che hanno il valore di A
 - non i valori distinti di A
 - quindi in assenza di valori il risultato è lo stesso, in presenza di valori nulli per A
 - count(A) è il numero di ennuple che non hanno il valore nullo

esami	Matricola	Voto	Codice	
	3456	30	04	
	3456	NULL	02	
	9283	27	01	
_	6554	26	01	
	6554	26	05	

Numero esami e voto medio per ciascuno studente

AGG Matricola; avg(Voto) → Media, count(*) → NumEsami (esami)

Matricola	Media	NumEsami
3456	30	2
9283	27	1
6554	26	2

 Numero voti e voto medio per ciascuno studente AGG Matricola; avg(Voto) → Media, count(Voto) → NumVoti (esami)

Matricola	Media	NumVoti
3456	30	1
9283	27	1
6554	26	2

Join

- il join è l'operatore più interessante dell'algebra relazionale
- permette di correlare dati in relazioni diverse

Il solito esempio

(con nomi di attributi modificati in "esami")

(con norm ar attributi modificati in coaim)					
studenti	<u>Matricola</u>	Cognome	Nome	Data di na	scita
	6554	Rossi	Mario	05/12/19	978
	8765	Neri	Paolo	03/11/19	976
	9283	Verdi	Luisa	12/11/19	979
	3456	Rossi	Maria	01/02/19	978
	esami	Matricola	Voto	Codice	
		3456	30	04	
		3456	24	02	
		9283	28	01	
		6554	26	01	
	corsi	<u>Codice</u>	Titolo	Docente	
		01	Analisi	Mario	
		02	Chimica	Bruni	
		04	Chimica	Verdi	

studenti	Matricola	Cognome	Nome	Data di na	scita
	3456	Rossi	Maria	01/02/19	978
	esami	Matricola 3456 3456	Voto 30 24	Codice 04 02	
	corsi	Codice 02 04	Titolo Chimica Chimica	Docente Bruni Verdi	

(studenti JOIN esami) JOIN corsi

Matricola C	Cognome	Nome	Data di nascita	Voto	Codice	Titolo	Docente
3456	Rossi	Maria	01/02/1978	30	04	Chimica	Bruni
3456	Rossi	Maria	01/02/1978	24	02	Chimica	Verdi

Join naturale

- operatore binario (generalizzabile)
- produce un risultato
 - sull'unione degli attributi degli operandi
 - con ennuple costruite ciascuna a partire da una ennupla di ognuno degli operandi

Join, sintassi e semantica

alla lavagna

JOIN M

JOIN NATURALE

$$\Re_{1}(\chi_{1})$$
 $\Re_{2}(\chi_{2})$

$$R_1 \times R_2 = \{ t \text{ sw } X_1 \times 2 |$$

esistomo tiERietzERZ

Esempi

- alla lavagna
 - join completo, non completo, vuoto, mxn

'	IMPIEGATO	REPARTO	R ₂ REPARTO	CAPD
	Rossi	A	A	Mou
	Neri	B	月	Brui
	Banch	B		

RIMR2

IMPIEGATO	REPARTO	CAPO
2955	A	Mori
Neri	B	bruni
Biandia	i di dati - Algebra relazionale	Brun

IMPLEGATO REPARTO CAPO
ROSSI A

Neri B

Bianchi B

RIMR2

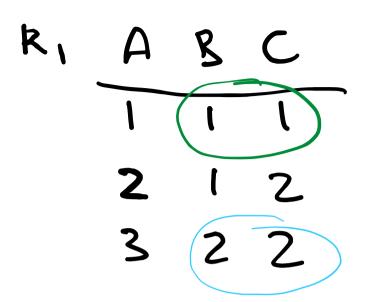
IMPIEGATO REPARTO CAPO

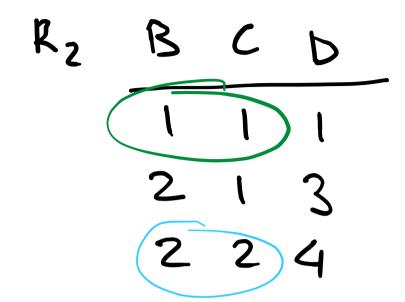
Neri B Moni

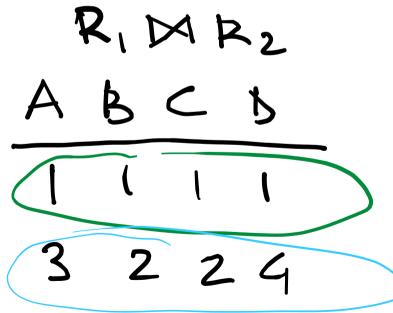
Bianchi B Mori

IMPIEGATO REPARTO REPARTO CAPD Rossi New

RIMR2

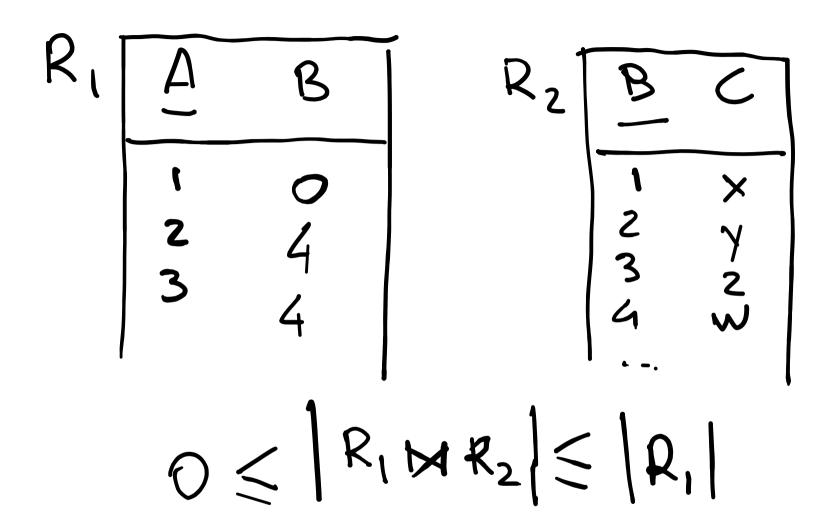

IMPIEGATO REPARTO CAPO


IMPIEGATO REPARTO REPARTO CAPD Rossi New RIMR2 IMPIEGATO READETTO CAPO 6 enne ple.


21/10/2021

Atzeni - Basi di dati - Algebra relazionale

75


Cardinalità del join

- Il join di R₁ e R₂ contiene un numero di ennuple ...
 - alla lavagna (chiavi, vincoli integrità referenziale)

$$R_1$$
 $|R_1|$ $|R_2|$

$$0 \leq |R_1| \bowtie R_2| \leq |R_1| \cdot |R_2|$$

21/10/2021

VINCOLO DI INTEGRITÀ REF.

FRA R. (B) & LA CHINYE B DI R2

| R. M. R2 | = | R1 |

Cardinalità del join

- Il join di R₁ e R₂ contiene un numero di ennuple
 - compreso fra zero e il prodotto di |R₁| e |R₂|
- se il join coinvolge una chiave di R₂, allora il numero di ennuple è
 - compreso fra zero e R₁
- se il join coinvolge una chiave di R₂ e un vincolo di integrità referenziale verso di essa, allora il numero di ennuple è
 - pari a |R₁|

Cardinalità del join, 2

- $R_1(A,B)$, $R_2(B,C)$
- in generale

$$0 \le |R_1| |R_2| \le |R_1| | |R_2| |$$

se B è chiave in R₂

$$0 \le |R_1 \text{ JOIN } R_2| \le |R_1|$$

 se B è chiave in R₂ ed esiste vincolo di integrità referenziale fra B (in R₁) e R₂:

$$|R_1 \text{ JOIN } R_2| = |R_1|$$

Join, una difficoltà

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

 alcune ennuple non contribuiscono al risultato: vengono "tagliate fuori"

Join esterno

- Il join esterno estende, con valori nulli, le ennuple che verrebbero tagliate fuori da un join (interno)
- esiste in tre versioni:
 - sinistro, destro, completo

Join, esterno

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
C	Bruni

 Vedere anche su Relax (nella base di dati mostrata per gli esempi, usare R1 e R2)

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOINLEFT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOINRIGHT Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
NULL	С	Bruni

<u> </u>	
Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Reparto	Capo
В	Mori
С	Bruni

Impiegati JOINFULL Reparti

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori
Rossi	Α	NULL
NULL	С	Bruni

 Su Relax il risultato ha una forma leggermente diversa, ma il concetto è lo stesso

Join e proiezioni

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparto	Capo
В	Mori
С	Bruni

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Mori

Impiegato	Reparto
Neri	В
Bianchi	В

Reparto	Capo
В	Mori

Join e proiezioni

•
$$R_1(X_1)$$
, $R_2(X_2)$

$$PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$$

Proiezioni e join

Impiegato	Reparto	Capo
Neri	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Impiegato	Reparto
Neri	В
Bianchi	В
Verdi	Α

Reparto	Capo
В	Mori
В	Bruni
Α	Bini

Impiegato	Reparto	Capo
Neri	В	Mori
Neri	В	Bruni
Bianchi	В	Mori
Bianchi	В	Bruni
Verdi	Α	Bini

Join e proiezioni

• $R_1(X_1)$, $R_2(X_2)$

$$PROJ_{X_1}(R_1 JOIN R_2) \subseteq R_1$$

• R(X), $X = X_1 \cup X_2$

$$(PROJ_{X_1}(R)) JOIN (PROJ_{X_2}(R)) \supseteq R$$

Prodotto cartesiano

- un join naturale su relazioni senza attributi in comune
- contiene sempre un numero di ennuple pari al prodotto delle cardinalità degli operandi (le ennuple sono tutte combinabili)

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Rossi	Α	В	Bruni
Neri	В	Α	Mori
Neri	В	В	Bruni
Bianchi	В	Α	Mori
Bianchi	В	В	Bruni

 Il prodotto cartesiano, in pratica, ha senso (quasi) solo se seguito da selezione:

 L'operazione viene chiamata theta-join e indicata con

Equi-join

 Se l'operatore di confronto nel theta-join è sempre l'uguaglianza (=) allora si parla di equijoin

Nota: ci interessa davvero l'equi-join, non il thetajoin più generale

 Equi-join: prodotto cartesiano seguito da selezione di uguaglianza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Reparti

Codice	Capo
Α	Mori
В	Bruni

Impiegati JOIN_{Reparto=Codice} Reparti

Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В	В	Bruni

Join naturale ed equi-join

- In pratica, ciò che ci interessa è l'equi-join
- Il join naturale lo abbiamo usato solo a fini didattici, perché i concetti sono più semplici
- Nelle interrogazioni "pratiche" useremo l'equi-join

Equivalenza di espressioni

- Due espressioni sono equivalenti se producono risultati uguali fra loro qualunque su ogni istanza della base di dati
- L'equivalenza è importante in pratica perché i DBMS cercano di eseguire espressioni equivalenti a quelle date, ma meno "costose"

Un'equivalenza importante

Push selections (se A è attributo di R₁)

$$SEL_{A=10}(R_1 JOIN R_2) = SEL_{A=10}(R_1) JOIN R_2$$

Nota

- In questo corso, ci preoccupiamo poco dell' efficienza:
 - L'obiettivo è di scrivere interrogazioni corrette e leggibili
- Motivazione:
 - I DBMS si preoccupano di scegliere le strategie realizzative efficienti

Viste (relazioni derivate)

- Relazioni di base: contenuto autonomo, le relazioni nella base di dati
- Relazioni derivate:
 - relazioni il cui contenuto è funzione del contenuto di altre relazioni (definito per mezzo di interrogazioni)
- Le relazioni derivate possono essere definite su altre derivate, ma ...

Viste, esempio

Afferenza

Impiegato	Reparto
Rossi	Α
Neri	В
Bianchi	В

Direzione

Reparto	Capo
Α	Mori
В	Bruni

• una vista:

Supervisione = PROJ _{Impiegato, Capo} (Afferenza JOIN Direzione)

Interrogazioni sulle viste

 Sono eseguite sostituendo alla vista la sua definizione:

```
SEL<sub>Capo='Leoni'</sub> (Supervisione)
viene eseguita come
SEL<sub>Capo='Leoni'</sub>(
PROJ <sub>Impiegato, Capo</sub> (Afferenza JOIN Direzione))
```

Viste, motivazioni

Nota bene:

- L'utilizzo di viste non influisce sull'efficienza delle interrogazioni Vantaggi:
- Soprattutto:
 - Strumento di programmazione:
 - si può semplificare la scrittura di interrogazioni: espressioni complesse e sottoespressioni ripetute
- Ogni utente vede solo
 - ciò che gli interessa e nel modo in cui gli interessa, senza essere distratto dal resto
 - ciò che autorizzato a vedere (autorizzazioni)
- Utilizzo di programmi esistenti su schemi ristrutturati

Viste come strumento di programmazione

- Trovare gli impiegati che hanno lo stesso capo di Rossi (vedremo meglio il concetto più avanti)
- Senza vista:

```
PROJ <sub>Impiegato</sub> ((Afferenza JOIN Direzione) JOIN REN <sub>ImpR,RepR</sub> ← Imp,Reparto (
SEL <sub>Impiegato='Rossi'</sub> (Afferenza JOIN Direzione)))
```

Con la vista:

```
PROJ <sub>Impiegato</sub> (Supervisione JOIN REN <sub>ImpR← Imp</sub> (
SEL <sub>Impiegato='Rossi'</sub> (Supervisione)))
```

Un servizio online per esercitazioni in algebra relazionale

(lo abbiamo già visto ma ripetiamo i dettagli per comodità – ora è necessario usare lo strumento)

- RelaX
 - http://dbis-uibk.github.io/relax/calc
- Verrà proposto un "homework" il cui svolgimento sarà necessario per partecipare alla prova parziale

RelaX

- Utilizza una sintassi molto simile a quella vista a lezione e sul libro
- L'editor aiuta nella scrittura degli operatori e dei nomi di relazione e di attributo (basta cliccare sul simbolo desiderato)
- Talvolta è utile scrivere direttamente allora attenzione a maiuscole e minuscole (è "case-sensitive")
- Le espressioni sono talvolta di lettura non semplice, perché tutto su una linea, senza "pedici":
 - scriviamo σ Stipendio>40 (Impiegati) invece di σ _{Stipendio>40} (Impiegati)
- Attenzione agli spazi (talvolta lo strumento si confonde) e spesso è utile qualche parentesi in più
- Una differenza nella "assegnazione"; serve una "ridenominazione" esplicita della relazione; invece di

Capi := Impiegati

dobbiamo scrivere

Capi = ρ Capi (Impiegati)

Rappresentazione grafica

- RelaX fornisce anche una rappresentazione grafica delle espressioni sotto forma di albero, molto espressiva
- Ogni operatore è un nodo, con uno o due nodi discendenti (a seconda che abbia uno o due operandi) e le foglie sono relazioni nella base di dati
- Nei lucidi seguenti sono mostrate le interrogazioni discusse in aula e per ciascuna è mostrata la formulazione mostrata in aula, quelle in RelaX (molto simile) e l'albero generato da RelaX

Dati

- Accedendo al servizio si possono specificare interrogazioni su una base di dati
 - fra quelle disponibili sul servizio, oppure
 - su una "caricata" dall'utente
- Per i primi esempi (in questa presentazione), le basi di dati sono state predisposte e possono essere caricate selezionando il link "Select DB .." (in alto a sinistra) e inserendo nel campo "Load dataset stored in a gist" il relativo link

<u>1a9dc6cd0f3478388fc177dfc9b5a314</u> (prima bd) <u>b7a8eac38317e0d6a7f0b904a9a10bd3</u> (seconda bd)

oppure, più semplicemente richiamando RelaX con l'url:

http://dbis-uibk.github.io/relax/calc/gist/1a9dc6cd0f3478388fc177dfc9b5a314 http://dbis-uibk.github.io/relax/calc/gist/b7a8eac38317e0d6a7f0b904a9a10bd3

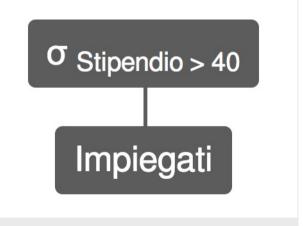
 Ulteriori basi di dati (data-set nella terminologia di RelaX) possono essere predisposti con una sintassi molto semplice e caricati su github (vedere l'help)

```
Impiegati = {
 Matricola, Nome, Eta:number, Stipendio:number
          7309, Rossi, 34, 45
          5998, Bianchi, 37, 38
          9553, Neri, 42, 35
          5698, Bruni, 43, 42
          4076, Mori, 45, 50
          8123, Lupi, 46, 60
Supervisione = {
 Impiegato, Capo
          7309, 5698
          5998, 5698
          9553, 4076
          5698, 4076
          4076, 8123
```

Esempi

Impiegati

<u>Matricola</u>	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60


Supervisione

<u>Impiegato</u>	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

SEL_{Stipendio>40}(Impiegati)

σ Stipendio>40 (Impiegati))

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40

PROJ_{Matricola, Nome, Età} (SEL_{Stipendio>40}(Impiegati))

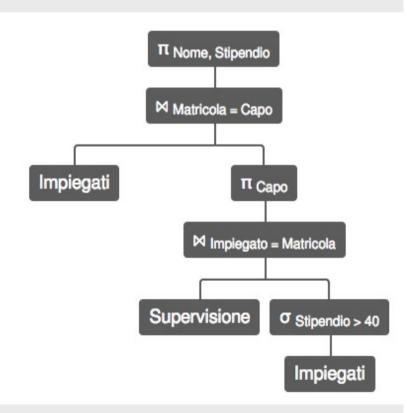
π Matricola, Nome, Eta (σ Stipendio>40 (Impiegati))



 Trovare le matricole dei capi degli impiegati che guadagnano più di 40

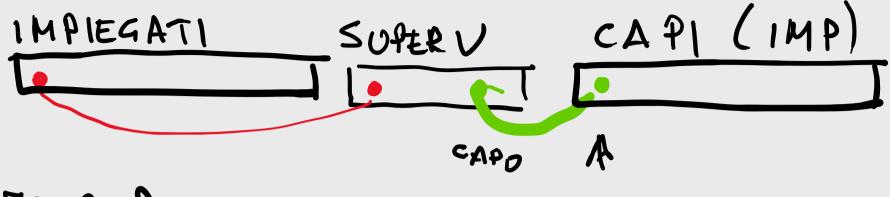
```
PROJ<sub>Capo</sub> (Supervisione
JOIN Impiegato=Matricola
(SEL<sub>Stipendio>40</sub>(Impiegati)))
```

```
π Capo ((Supervisione)


⋈ Impiegato=Matricola
(σ Stipendio>40 (Impiegati)))
```


 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40

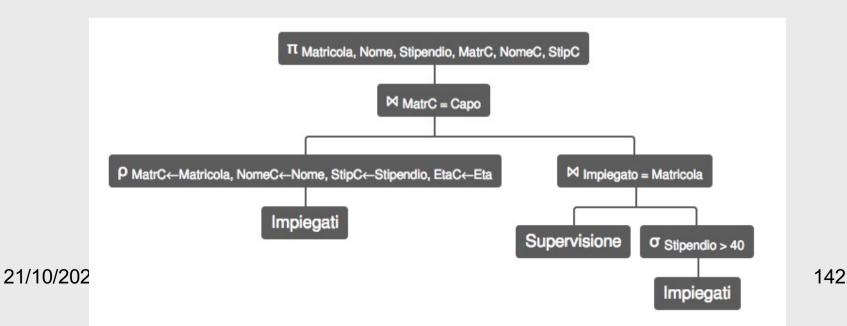
```
PROJ<sub>Nome,Stipendio</sub> (
Impiegati JOIN Matricola=Capo
PROJ<sub>Capo</sub> (Supervisione
JOIN Impiegato=Matricola
(SEL<sub>Stipendio>40</sub> (Impiegati))))
```


```
π Nome, Stipendio (
Impiegati ⋈ Matricola = Capo (π Capo ((Supervisione) 
⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))
```


 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

• un po' complessa, vediamo prima un'altra interrogazione con caratteristiche simili, ma più semplice

- Trovare matricola, nome e stipendio dei capi degli impiegati che guadagnano più di 40; per ciascuno, mostrare, matricola, nome e stipendio anche dell'impiegato
- II problema:
 - cii interessano, insieme, valori di uno stesso attributo, ma di ennuple diverse



7309 ROSSI 45 7309 5698 5698 BRUNI 42

 Trovare matricola, nome e stipendio dei capi degli impiegati che guadagnano più di 40; per ciascuno, mostrare, matricola, nome e stipendio anche dell'impiegato

```
PROJ<sub>Matr,Nome,Stip,MatrC,NomeC,StipC</sub>
(REN_{MatrC,NomeC,StipC,EtàC} \leftarrow Matr,Nome,Stip,Età(Impiegati) \\ JOIN \\ MatrC=Capo
(Supervisione JOIN \\ Impiegato=Matricola \\ SEL_{Stipendio}>40(Impiegati)))
\pi Matricola, Nome, Stipendio, MatrC, NomeC, StipC
(\rho MatrC\leftarrow Matricola, NomeC\leftarrow Nome, StipC\leftarrow Stipendio, EtaC\leftarrow Eta (Impiegati))
\bowtie MatrC = Capo
```

(((Supervisione) ⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))

- La notazione con le ridenominazioni, pur corretta, è un po' troppo "verbosa"
- Ne vediamo un'altra, basata sulle viste

Una convenzione e notazione alternativa per i join

- Nota: è sostanzialmente l'approccio usato in SQL
- Ignoriamo il join naturale (cioè non consideriamo implicitamente condizioni su attributi con nomi uguali)
- Per "riconoscere" attributi con lo stesso nome gli premettiamo il nome della relazione
- Usiamo viste (o "assegnazioni") per ridenominare le relazioni
 - (ridenominiamo gli attributi solo quando serve per l'unione o per dare nomi significativi nel riusltato)

 Trovare matricola, nome e stipendio dei capi degli impiegati che guadagnano più di 40; per ciascuno, mostrare, matricola, nome e stipendio anche dell'impiegato

```
PROJ_{Matr,Nome,Stip,MatrC,NomeC,StipC}\\ (REN_{MatrC,NomeC,StipC,EtàC\leftarrow\ Matr,Nome,Stip,Età}(Impiegati)\\ JOIN_{MatrC=Capo}\\ (Supervisione\ JOIN_{Impiegato=Matricola}\ SEL_{Stipendio>40(}Impiegati)))
```

Capi := Imp

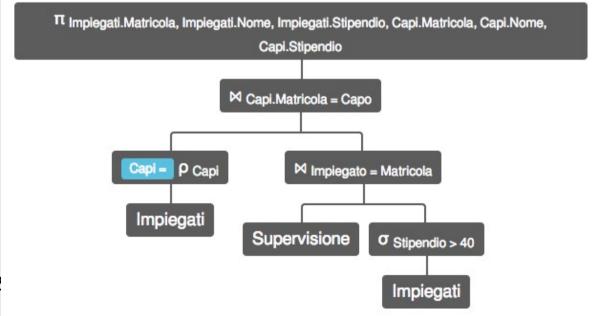
```
PROJ<sub>Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip</sub>
(Capi JOIN <sub>Capi.Matr=Capo</sub>
(Sup JOIN <sub>Imp=Imp.Matr</sub> SEL<sub>Stipendio>40</sub>(Imp)))
```

.

RelaX

- Utilizza una sintassi molto simile a quella vista a lezione e sul libro
- L'editor aiuta nella scrittura degli operatori e dei nomi di relazione e di attributo (basta cliccare sul simbolo desiderato)
- Talvolta è utile scrivere direttamente allora attenzione a maiuscole e minuscole (è "case-sensitive")
- Le espressioni sono talvolta di lettura non semplice, perché tutto su una linea, senza "pedici":
 - scriviamo σ Stipendio>40 (Impiegati) invece di σ Stipendio>40 (Impiegati)
- Attenzione agli spazi (talvolta il parser si confonde) e spesso è utile qualche parentesi in più
- Una differenza nella "assegnazione"; serve una "ridenominazione" esplicita della relazione; invece di

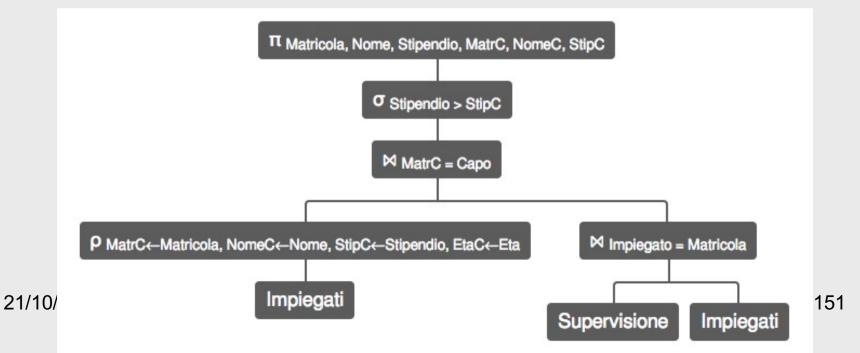
Capi := Impiegati


dobbiamo scrivere

Capi = ρ Capi (Impiegati)

PROJ_{Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip}
(Capi JOIN _{Capi.Matr=Capo}
(Sup JOIN _{Imp=Imp.Matr} SEL_{Stipendio>40}(Imp)))

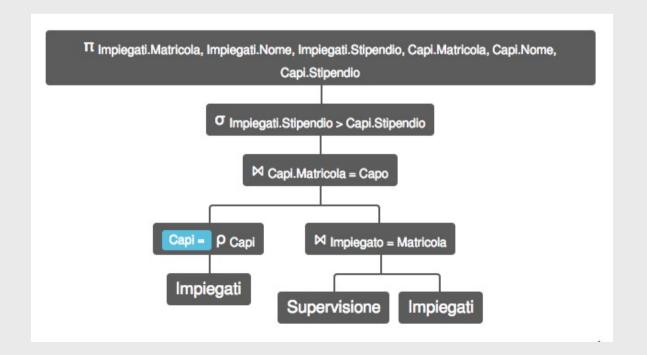
Capi = ρ Capi (Impiegati)


π Impiegati.Matricola, Impiegati.Nome, Impiegati.Stipendio, Capi.Matricola, Capi.Nome, Capi.Stipendio (Capi⋈ Capi.Matricola = Capo (((Supervisione) ⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))

 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\begin{aligned} & \mathsf{PROJ}_{\mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC}} \\ & & (\mathsf{SEL}_{\mathsf{Stipendio}} \!\!>\!\! \mathsf{StipC}(} \\ & \mathsf{REN}_{\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC},\mathsf{Et\grave{a}C}} \leftarrow \mathsf{Matr},\!\mathsf{Nome},\!\mathsf{Stip},\!\mathsf{Et\grave{a}}}(\mathsf{Impiegati}) \\ & & \mathsf{JOIN}_{\mathsf{MatrC}=\mathsf{Capo}} \\ & & (\mathsf{Supervisione}\;\mathsf{JOIN}_{\mathsf{Impiegato}=\mathsf{Matricola}}\;\mathsf{Impiegati}))) \end{aligned}
```

π Matricola, Nome, Stipendio, MatrC, NomeC, StipC
(σ Stipendio>StipC
(ρ MatrC←Matricola, NomeC←Nome, StipC←Stipendio, EtaC←Eta (Impiegati)
⋈ MatrC = Capo
((Supervisione) ⋈ Impiegato=Matricola (Impiegati))))

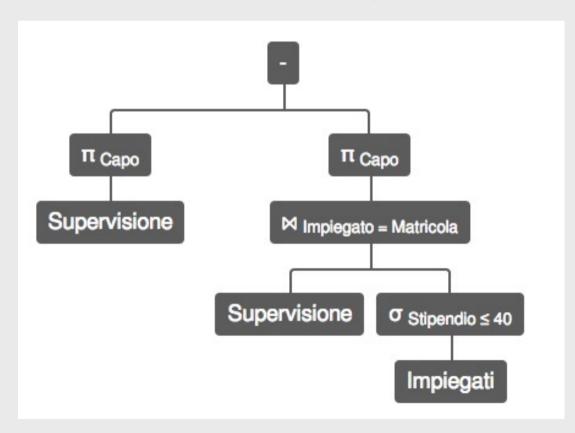


 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
PROJ_{Matr,Nome,Stip,MatrC,NomeC,StipC}\\ (SEL_{Stipendio>StipC}(\\ REN_{MatrC,NomeC,StipC,EtàC\leftarrow\ Matr,Nome,Stip,Età}(Impiegati)\\ JOIN_{MatrC=Capo}\\ (Supervisione\ JOIN_{Impiegato=Matricola}\ Impiegati)))
```

```
PROJ_{Matr,Nome,Stip,MatrC,NomeC,StipC}\\ (SEL_{Stip}>_{StipC}(\\ REN_{MatrC,NomeC,StipC,EtàC}\leftarrow _{Matr,Nome,Stip,Età}(Imp)\\ JOIN_{MatrC=Capo}\\ (Sup JOIN_{Imp=Matr}|Imp)))\\ Capi := Imp
```

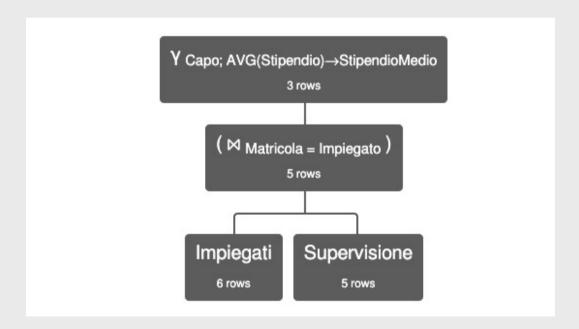
PROJ_{Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip}
(SEL_{Imp.Stip}>Capi.Stip(
Capi JOIN Capi.Matr=Capo (Sup JOIN Imp=Imp.Matr Imp)))


 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40

- Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40
 - tutti i capi, esclusi quelli che hanno impiegati che guadagnano non più di 40
 - con la differenza

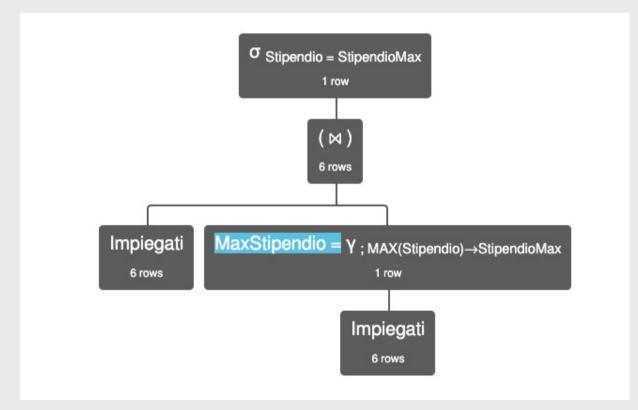
 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40

 $\label{eq:proj_capo} \mathsf{PROJ}_\mathsf{Capo}\left(\mathsf{Supervisione}\right) \text{-} \\ \mathsf{PROJ}_\mathsf{Capo}\left(\mathsf{Supervisione}\;\mathsf{JOIN}\;_{\mathsf{Impiegato=Matricola}}\;\left(\mathsf{SEL}_{\mathsf{Stipendio}} \leq 40(\mathsf{Impiegati})\right)\right)$


π Capo (Supervisione) – π Capo (Supervisione ⋈ Impiegato=Matricola (σ Stipendio ≤ 40 (Impiegati)))

21/10/2021

 Trovare, per ciascun capo, la media degli stipendi dei relativi impiegati


γ Capo; avg(Stipendio)→StipendioMedio (Impiegati ⋈ Matricola=Impiegato Supervisione)

- Trovare l'impiegato (o gli impiegati, se più di uno) con lo stipendio massimo
 - serve una vista

MaxStipendio = γ max(Stipendio)→StipendioMax (Impiegati)

σ Stipendio=StipendioMax (Impiegati ⋈ MaxStipendio)

